Review



rapamycin  (MedChemExpress)


Bioz Verified Symbol MedChemExpress is a verified supplier
Bioz Manufacturer Symbol MedChemExpress manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 96

    Structured Review

    MedChemExpress rapamycin
    SCS modulates mesenchymal stem cell lineage bias via activation of the IGF-1/PI3K/Akt/mTOR signaling pathway. ( A ) Quantitative analysis of osteocyte morphology in the trabecular bone matrix of the bone marrow at week 6 after MPS treatment with or without SCS, in the presence of various neutralizing antibodies (NAbs) and antagonistic proteins. ( B ) ELISA analysis of IGF-1 and BMP-2 levels in the femoral bone marrow and peripheral serum at day 7 following SCS treatment under MPS conditions. ( C and D ) Western blot analysis of phospho-PI3K, phospho-Akt, and phospho-mTOR (C), as well as phospho-Smad1/5/8, phospho-ERK, and phospho-p38 (D), in CD45 − Ter119 − CD31 − LepR + MSCs after 15-min stimulation with conditioned medium (CM) derived from bone marrow fluid at day 7 following SCS treatment. ( E – G ) Representative flow cytometry plots (E, F) and quantitative analysis (G) of CD45 − CD31 − Sca-1 + CD24 − adipocyte progenitor cells (APCs), CD45 − CD31 − Sca-1 + CD24 + MSCs (E), and CD45 − CD31 − Sca-1 − PDGFRα + (Pα + ) osteoprogenitor cells (OPCs) (F) from femoral bone marrow at day 14 post-MPS induction with or without combined treatment using SCS and IGF-1 NAb or Noggin. ( H and I ) Representative SA-β-Gal staining images (green) of the femur (H), and corresponding quantification (I), at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. Insets show magnified views of bone marrow (BM) and trabecular bone matrix (TBM) regions. (Scale bars, 100 μm and 25 μm) ( J ) qPCR analysis of 12 senescence-associated markers in ex vivo femoral bone tissues at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. ( K ) Representative Oil Red O staining images of CD45 − Ter119 − CD31 − LepR + MSCs sorted from femurs at day 7 following MPS treatment with SCS in combination with LY294002 or LDN-193189, after in vitro adipogenic induction. (Scale bars, 50 μm and 25 μm) ( L and M ) γ-H2A.X and telomere-associated DNA damage foci (TAFs) co-localization analysis (L), and corresponding quantification (M), in CD45 − Ter119 − CD31 + arteriolar ECs sorted from femurs at day 28 following MPS treatment with SCS in combination with <t>rapamycin</t> or LDN-193189, using immuno-FISH staining. (Scale bars, 7 μm and 1 μm) ( N and O ) Sequential fluorescent labeling using calcein (N) and quantification of mineral apposition rate (O) in femurs treated with SCS and MPS for 4 weeks, with or without LY294002 and/or GW9662. (Scale bars, 50 μm) ( P ) ELISA analysis of five senescence-associated cytokines in femoral bone marrow at day 28 following MPS treatment with SCS in combination with rapamycin and/or T0070907. ( Q and R ) Representative t-distributed stochastic neighbor embedding (t-SNE) plots (Q) from flow cytometric analysis of CD45 − CD31 − Sca-1 + CD24 − APCs, CD45 − CD31 − Sca-1 + CD24 + MSCs, CD45 − CD31 − Sca-1 − Pα + OPCs, CD45 − Ter119 − CD31 + arteriolar ECs, and CD45 − Ter119 − Emcn + sinusoidal ECs at day 14 following MPS treatment with SCS in combination with IGF-1 and/or rosiglitazone, and quantitative analysis of APCs (R) ( S ) Heatmap showing the fluorescent intensity distribution of Lamin-B1 expression across five cellular subpopulations as identified in the t-SNE clustering plot. ∗ P < 0.05 vs. IgG (empty lacunae); # P < 0.05 vs. IgG (filled lacunae). ∗ P < 0.05 vs. SCS; # P < 0.05 vs. SCS + IGF-1 NAb. Data are presented as mean ± SD. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001; ns, not significant. Statistical significance was determined using an unpaired two-tailed Student's t -test ( B ), or one-way ANOVA with Tukey's post hoc test ( A, G, I, J, O, P and R ).
    Rapamycin, supplied by MedChemExpress, used in various techniques. Bioz Stars score: 96/100, based on 118 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rapamycin/product/MedChemExpress
    Average 96 stars, based on 118 article reviews
    rapamycin - by Bioz Stars, 2026-02
    96/100 stars

    Images

    1) Product Images from "Sulfated polysaccharide prevents senescent adipocyte-driven osteonecrosis by stem cell fate reprogramming"

    Article Title: Sulfated polysaccharide prevents senescent adipocyte-driven osteonecrosis by stem cell fate reprogramming

    Journal: Bioactive Materials

    doi: 10.1016/j.bioactmat.2025.11.039

    SCS modulates mesenchymal stem cell lineage bias via activation of the IGF-1/PI3K/Akt/mTOR signaling pathway. ( A ) Quantitative analysis of osteocyte morphology in the trabecular bone matrix of the bone marrow at week 6 after MPS treatment with or without SCS, in the presence of various neutralizing antibodies (NAbs) and antagonistic proteins. ( B ) ELISA analysis of IGF-1 and BMP-2 levels in the femoral bone marrow and peripheral serum at day 7 following SCS treatment under MPS conditions. ( C and D ) Western blot analysis of phospho-PI3K, phospho-Akt, and phospho-mTOR (C), as well as phospho-Smad1/5/8, phospho-ERK, and phospho-p38 (D), in CD45 − Ter119 − CD31 − LepR + MSCs after 15-min stimulation with conditioned medium (CM) derived from bone marrow fluid at day 7 following SCS treatment. ( E – G ) Representative flow cytometry plots (E, F) and quantitative analysis (G) of CD45 − CD31 − Sca-1 + CD24 − adipocyte progenitor cells (APCs), CD45 − CD31 − Sca-1 + CD24 + MSCs (E), and CD45 − CD31 − Sca-1 − PDGFRα + (Pα + ) osteoprogenitor cells (OPCs) (F) from femoral bone marrow at day 14 post-MPS induction with or without combined treatment using SCS and IGF-1 NAb or Noggin. ( H and I ) Representative SA-β-Gal staining images (green) of the femur (H), and corresponding quantification (I), at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. Insets show magnified views of bone marrow (BM) and trabecular bone matrix (TBM) regions. (Scale bars, 100 μm and 25 μm) ( J ) qPCR analysis of 12 senescence-associated markers in ex vivo femoral bone tissues at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. ( K ) Representative Oil Red O staining images of CD45 − Ter119 − CD31 − LepR + MSCs sorted from femurs at day 7 following MPS treatment with SCS in combination with LY294002 or LDN-193189, after in vitro adipogenic induction. (Scale bars, 50 μm and 25 μm) ( L and M ) γ-H2A.X and telomere-associated DNA damage foci (TAFs) co-localization analysis (L), and corresponding quantification (M), in CD45 − Ter119 − CD31 + arteriolar ECs sorted from femurs at day 28 following MPS treatment with SCS in combination with rapamycin or LDN-193189, using immuno-FISH staining. (Scale bars, 7 μm and 1 μm) ( N and O ) Sequential fluorescent labeling using calcein (N) and quantification of mineral apposition rate (O) in femurs treated with SCS and MPS for 4 weeks, with or without LY294002 and/or GW9662. (Scale bars, 50 μm) ( P ) ELISA analysis of five senescence-associated cytokines in femoral bone marrow at day 28 following MPS treatment with SCS in combination with rapamycin and/or T0070907. ( Q and R ) Representative t-distributed stochastic neighbor embedding (t-SNE) plots (Q) from flow cytometric analysis of CD45 − CD31 − Sca-1 + CD24 − APCs, CD45 − CD31 − Sca-1 + CD24 + MSCs, CD45 − CD31 − Sca-1 − Pα + OPCs, CD45 − Ter119 − CD31 + arteriolar ECs, and CD45 − Ter119 − Emcn + sinusoidal ECs at day 14 following MPS treatment with SCS in combination with IGF-1 and/or rosiglitazone, and quantitative analysis of APCs (R) ( S ) Heatmap showing the fluorescent intensity distribution of Lamin-B1 expression across five cellular subpopulations as identified in the t-SNE clustering plot. ∗ P < 0.05 vs. IgG (empty lacunae); # P < 0.05 vs. IgG (filled lacunae). ∗ P < 0.05 vs. SCS; # P < 0.05 vs. SCS + IGF-1 NAb. Data are presented as mean ± SD. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001; ns, not significant. Statistical significance was determined using an unpaired two-tailed Student's t -test ( B ), or one-way ANOVA with Tukey's post hoc test ( A, G, I, J, O, P and R ).
    Figure Legend Snippet: SCS modulates mesenchymal stem cell lineage bias via activation of the IGF-1/PI3K/Akt/mTOR signaling pathway. ( A ) Quantitative analysis of osteocyte morphology in the trabecular bone matrix of the bone marrow at week 6 after MPS treatment with or without SCS, in the presence of various neutralizing antibodies (NAbs) and antagonistic proteins. ( B ) ELISA analysis of IGF-1 and BMP-2 levels in the femoral bone marrow and peripheral serum at day 7 following SCS treatment under MPS conditions. ( C and D ) Western blot analysis of phospho-PI3K, phospho-Akt, and phospho-mTOR (C), as well as phospho-Smad1/5/8, phospho-ERK, and phospho-p38 (D), in CD45 − Ter119 − CD31 − LepR + MSCs after 15-min stimulation with conditioned medium (CM) derived from bone marrow fluid at day 7 following SCS treatment. ( E – G ) Representative flow cytometry plots (E, F) and quantitative analysis (G) of CD45 − CD31 − Sca-1 + CD24 − adipocyte progenitor cells (APCs), CD45 − CD31 − Sca-1 + CD24 + MSCs (E), and CD45 − CD31 − Sca-1 − PDGFRα + (Pα + ) osteoprogenitor cells (OPCs) (F) from femoral bone marrow at day 14 post-MPS induction with or without combined treatment using SCS and IGF-1 NAb or Noggin. ( H and I ) Representative SA-β-Gal staining images (green) of the femur (H), and corresponding quantification (I), at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. Insets show magnified views of bone marrow (BM) and trabecular bone matrix (TBM) regions. (Scale bars, 100 μm and 25 μm) ( J ) qPCR analysis of 12 senescence-associated markers in ex vivo femoral bone tissues at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. ( K ) Representative Oil Red O staining images of CD45 − Ter119 − CD31 − LepR + MSCs sorted from femurs at day 7 following MPS treatment with SCS in combination with LY294002 or LDN-193189, after in vitro adipogenic induction. (Scale bars, 50 μm and 25 μm) ( L and M ) γ-H2A.X and telomere-associated DNA damage foci (TAFs) co-localization analysis (L), and corresponding quantification (M), in CD45 − Ter119 − CD31 + arteriolar ECs sorted from femurs at day 28 following MPS treatment with SCS in combination with rapamycin or LDN-193189, using immuno-FISH staining. (Scale bars, 7 μm and 1 μm) ( N and O ) Sequential fluorescent labeling using calcein (N) and quantification of mineral apposition rate (O) in femurs treated with SCS and MPS for 4 weeks, with or without LY294002 and/or GW9662. (Scale bars, 50 μm) ( P ) ELISA analysis of five senescence-associated cytokines in femoral bone marrow at day 28 following MPS treatment with SCS in combination with rapamycin and/or T0070907. ( Q and R ) Representative t-distributed stochastic neighbor embedding (t-SNE) plots (Q) from flow cytometric analysis of CD45 − CD31 − Sca-1 + CD24 − APCs, CD45 − CD31 − Sca-1 + CD24 + MSCs, CD45 − CD31 − Sca-1 − Pα + OPCs, CD45 − Ter119 − CD31 + arteriolar ECs, and CD45 − Ter119 − Emcn + sinusoidal ECs at day 14 following MPS treatment with SCS in combination with IGF-1 and/or rosiglitazone, and quantitative analysis of APCs (R) ( S ) Heatmap showing the fluorescent intensity distribution of Lamin-B1 expression across five cellular subpopulations as identified in the t-SNE clustering plot. ∗ P < 0.05 vs. IgG (empty lacunae); # P < 0.05 vs. IgG (filled lacunae). ∗ P < 0.05 vs. SCS; # P < 0.05 vs. SCS + IGF-1 NAb. Data are presented as mean ± SD. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001; ns, not significant. Statistical significance was determined using an unpaired two-tailed Student's t -test ( B ), or one-way ANOVA with Tukey's post hoc test ( A, G, I, J, O, P and R ).

    Techniques Used: Activation Assay, Enzyme-linked Immunosorbent Assay, Western Blot, Derivative Assay, Flow Cytometry, Staining, Ex Vivo, In Vitro, Labeling, Expressing, Two Tailed Test



    Similar Products

    96
    MedChemExpress rapamycin
    SCS modulates mesenchymal stem cell lineage bias via activation of the IGF-1/PI3K/Akt/mTOR signaling pathway. ( A ) Quantitative analysis of osteocyte morphology in the trabecular bone matrix of the bone marrow at week 6 after MPS treatment with or without SCS, in the presence of various neutralizing antibodies (NAbs) and antagonistic proteins. ( B ) ELISA analysis of IGF-1 and BMP-2 levels in the femoral bone marrow and peripheral serum at day 7 following SCS treatment under MPS conditions. ( C and D ) Western blot analysis of phospho-PI3K, phospho-Akt, and phospho-mTOR (C), as well as phospho-Smad1/5/8, phospho-ERK, and phospho-p38 (D), in CD45 − Ter119 − CD31 − LepR + MSCs after 15-min stimulation with conditioned medium (CM) derived from bone marrow fluid at day 7 following SCS treatment. ( E – G ) Representative flow cytometry plots (E, F) and quantitative analysis (G) of CD45 − CD31 − Sca-1 + CD24 − adipocyte progenitor cells (APCs), CD45 − CD31 − Sca-1 + CD24 + MSCs (E), and CD45 − CD31 − Sca-1 − PDGFRα + (Pα + ) osteoprogenitor cells (OPCs) (F) from femoral bone marrow at day 14 post-MPS induction with or without combined treatment using SCS and IGF-1 NAb or Noggin. ( H and I ) Representative SA-β-Gal staining images (green) of the femur (H), and corresponding quantification (I), at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. Insets show magnified views of bone marrow (BM) and trabecular bone matrix (TBM) regions. (Scale bars, 100 μm and 25 μm) ( J ) qPCR analysis of 12 senescence-associated markers in ex vivo femoral bone tissues at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. ( K ) Representative Oil Red O staining images of CD45 − Ter119 − CD31 − LepR + MSCs sorted from femurs at day 7 following MPS treatment with SCS in combination with LY294002 or LDN-193189, after in vitro adipogenic induction. (Scale bars, 50 μm and 25 μm) ( L and M ) γ-H2A.X and telomere-associated DNA damage foci (TAFs) co-localization analysis (L), and corresponding quantification (M), in CD45 − Ter119 − CD31 + arteriolar ECs sorted from femurs at day 28 following MPS treatment with SCS in combination with <t>rapamycin</t> or LDN-193189, using immuno-FISH staining. (Scale bars, 7 μm and 1 μm) ( N and O ) Sequential fluorescent labeling using calcein (N) and quantification of mineral apposition rate (O) in femurs treated with SCS and MPS for 4 weeks, with or without LY294002 and/or GW9662. (Scale bars, 50 μm) ( P ) ELISA analysis of five senescence-associated cytokines in femoral bone marrow at day 28 following MPS treatment with SCS in combination with rapamycin and/or T0070907. ( Q and R ) Representative t-distributed stochastic neighbor embedding (t-SNE) plots (Q) from flow cytometric analysis of CD45 − CD31 − Sca-1 + CD24 − APCs, CD45 − CD31 − Sca-1 + CD24 + MSCs, CD45 − CD31 − Sca-1 − Pα + OPCs, CD45 − Ter119 − CD31 + arteriolar ECs, and CD45 − Ter119 − Emcn + sinusoidal ECs at day 14 following MPS treatment with SCS in combination with IGF-1 and/or rosiglitazone, and quantitative analysis of APCs (R) ( S ) Heatmap showing the fluorescent intensity distribution of Lamin-B1 expression across five cellular subpopulations as identified in the t-SNE clustering plot. ∗ P < 0.05 vs. IgG (empty lacunae); # P < 0.05 vs. IgG (filled lacunae). ∗ P < 0.05 vs. SCS; # P < 0.05 vs. SCS + IGF-1 NAb. Data are presented as mean ± SD. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001; ns, not significant. Statistical significance was determined using an unpaired two-tailed Student's t -test ( B ), or one-way ANOVA with Tukey's post hoc test ( A, G, I, J, O, P and R ).
    Rapamycin, supplied by MedChemExpress, used in various techniques. Bioz Stars score: 96/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rapamycin/product/MedChemExpress
    Average 96 stars, based on 1 article reviews
    rapamycin - by Bioz Stars, 2026-02
    96/100 stars
      Buy from Supplier

    99
    MedChemExpress model rapamycin
    SCS modulates mesenchymal stem cell lineage bias via activation of the IGF-1/PI3K/Akt/mTOR signaling pathway. ( A ) Quantitative analysis of osteocyte morphology in the trabecular bone matrix of the bone marrow at week 6 after MPS treatment with or without SCS, in the presence of various neutralizing antibodies (NAbs) and antagonistic proteins. ( B ) ELISA analysis of IGF-1 and BMP-2 levels in the femoral bone marrow and peripheral serum at day 7 following SCS treatment under MPS conditions. ( C and D ) Western blot analysis of phospho-PI3K, phospho-Akt, and phospho-mTOR (C), as well as phospho-Smad1/5/8, phospho-ERK, and phospho-p38 (D), in CD45 − Ter119 − CD31 − LepR + MSCs after 15-min stimulation with conditioned medium (CM) derived from bone marrow fluid at day 7 following SCS treatment. ( E – G ) Representative flow cytometry plots (E, F) and quantitative analysis (G) of CD45 − CD31 − Sca-1 + CD24 − adipocyte progenitor cells (APCs), CD45 − CD31 − Sca-1 + CD24 + MSCs (E), and CD45 − CD31 − Sca-1 − PDGFRα + (Pα + ) osteoprogenitor cells (OPCs) (F) from femoral bone marrow at day 14 post-MPS induction with or without combined treatment using SCS and IGF-1 NAb or Noggin. ( H and I ) Representative SA-β-Gal staining images (green) of the femur (H), and corresponding quantification (I), at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. Insets show magnified views of bone marrow (BM) and trabecular bone matrix (TBM) regions. (Scale bars, 100 μm and 25 μm) ( J ) qPCR analysis of 12 senescence-associated markers in ex vivo femoral bone tissues at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. ( K ) Representative Oil Red O staining images of CD45 − Ter119 − CD31 − LepR + MSCs sorted from femurs at day 7 following MPS treatment with SCS in combination with LY294002 or LDN-193189, after in vitro adipogenic induction. (Scale bars, 50 μm and 25 μm) ( L and M ) γ-H2A.X and telomere-associated DNA damage foci (TAFs) co-localization analysis (L), and corresponding quantification (M), in CD45 − Ter119 − CD31 + arteriolar ECs sorted from femurs at day 28 following MPS treatment with SCS in combination with <t>rapamycin</t> or LDN-193189, using immuno-FISH staining. (Scale bars, 7 μm and 1 μm) ( N and O ) Sequential fluorescent labeling using calcein (N) and quantification of mineral apposition rate (O) in femurs treated with SCS and MPS for 4 weeks, with or without LY294002 and/or GW9662. (Scale bars, 50 μm) ( P ) ELISA analysis of five senescence-associated cytokines in femoral bone marrow at day 28 following MPS treatment with SCS in combination with rapamycin and/or T0070907. ( Q and R ) Representative t-distributed stochastic neighbor embedding (t-SNE) plots (Q) from flow cytometric analysis of CD45 − CD31 − Sca-1 + CD24 − APCs, CD45 − CD31 − Sca-1 + CD24 + MSCs, CD45 − CD31 − Sca-1 − Pα + OPCs, CD45 − Ter119 − CD31 + arteriolar ECs, and CD45 − Ter119 − Emcn + sinusoidal ECs at day 14 following MPS treatment with SCS in combination with IGF-1 and/or rosiglitazone, and quantitative analysis of APCs (R) ( S ) Heatmap showing the fluorescent intensity distribution of Lamin-B1 expression across five cellular subpopulations as identified in the t-SNE clustering plot. ∗ P < 0.05 vs. IgG (empty lacunae); # P < 0.05 vs. IgG (filled lacunae). ∗ P < 0.05 vs. SCS; # P < 0.05 vs. SCS + IGF-1 NAb. Data are presented as mean ± SD. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001; ns, not significant. Statistical significance was determined using an unpaired two-tailed Student's t -test ( B ), or one-way ANOVA with Tukey's post hoc test ( A, G, I, J, O, P and R ).
    Model Rapamycin, supplied by MedChemExpress, used in various techniques. Bioz Stars score: 99/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/model rapamycin/product/MedChemExpress
    Average 99 stars, based on 1 article reviews
    model rapamycin - by Bioz Stars, 2026-02
    99/100 stars
      Buy from Supplier

    99
    MedChemExpress autophagy activator rapa
    SCS modulates mesenchymal stem cell lineage bias via activation of the IGF-1/PI3K/Akt/mTOR signaling pathway. ( A ) Quantitative analysis of osteocyte morphology in the trabecular bone matrix of the bone marrow at week 6 after MPS treatment with or without SCS, in the presence of various neutralizing antibodies (NAbs) and antagonistic proteins. ( B ) ELISA analysis of IGF-1 and BMP-2 levels in the femoral bone marrow and peripheral serum at day 7 following SCS treatment under MPS conditions. ( C and D ) Western blot analysis of phospho-PI3K, phospho-Akt, and phospho-mTOR (C), as well as phospho-Smad1/5/8, phospho-ERK, and phospho-p38 (D), in CD45 − Ter119 − CD31 − LepR + MSCs after 15-min stimulation with conditioned medium (CM) derived from bone marrow fluid at day 7 following SCS treatment. ( E – G ) Representative flow cytometry plots (E, F) and quantitative analysis (G) of CD45 − CD31 − Sca-1 + CD24 − adipocyte progenitor cells (APCs), CD45 − CD31 − Sca-1 + CD24 + MSCs (E), and CD45 − CD31 − Sca-1 − PDGFRα + (Pα + ) osteoprogenitor cells (OPCs) (F) from femoral bone marrow at day 14 post-MPS induction with or without combined treatment using SCS and IGF-1 NAb or Noggin. ( H and I ) Representative SA-β-Gal staining images (green) of the femur (H), and corresponding quantification (I), at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. Insets show magnified views of bone marrow (BM) and trabecular bone matrix (TBM) regions. (Scale bars, 100 μm and 25 μm) ( J ) qPCR analysis of 12 senescence-associated markers in ex vivo femoral bone tissues at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. ( K ) Representative Oil Red O staining images of CD45 − Ter119 − CD31 − LepR + MSCs sorted from femurs at day 7 following MPS treatment with SCS in combination with LY294002 or LDN-193189, after in vitro adipogenic induction. (Scale bars, 50 μm and 25 μm) ( L and M ) γ-H2A.X and telomere-associated DNA damage foci (TAFs) co-localization analysis (L), and corresponding quantification (M), in CD45 − Ter119 − CD31 + arteriolar ECs sorted from femurs at day 28 following MPS treatment with SCS in combination with <t>rapamycin</t> or LDN-193189, using immuno-FISH staining. (Scale bars, 7 μm and 1 μm) ( N and O ) Sequential fluorescent labeling using calcein (N) and quantification of mineral apposition rate (O) in femurs treated with SCS and MPS for 4 weeks, with or without LY294002 and/or GW9662. (Scale bars, 50 μm) ( P ) ELISA analysis of five senescence-associated cytokines in femoral bone marrow at day 28 following MPS treatment with SCS in combination with rapamycin and/or T0070907. ( Q and R ) Representative t-distributed stochastic neighbor embedding (t-SNE) plots (Q) from flow cytometric analysis of CD45 − CD31 − Sca-1 + CD24 − APCs, CD45 − CD31 − Sca-1 + CD24 + MSCs, CD45 − CD31 − Sca-1 − Pα + OPCs, CD45 − Ter119 − CD31 + arteriolar ECs, and CD45 − Ter119 − Emcn + sinusoidal ECs at day 14 following MPS treatment with SCS in combination with IGF-1 and/or rosiglitazone, and quantitative analysis of APCs (R) ( S ) Heatmap showing the fluorescent intensity distribution of Lamin-B1 expression across five cellular subpopulations as identified in the t-SNE clustering plot. ∗ P < 0.05 vs. IgG (empty lacunae); # P < 0.05 vs. IgG (filled lacunae). ∗ P < 0.05 vs. SCS; # P < 0.05 vs. SCS + IGF-1 NAb. Data are presented as mean ± SD. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001; ns, not significant. Statistical significance was determined using an unpaired two-tailed Student's t -test ( B ), or one-way ANOVA with Tukey's post hoc test ( A, G, I, J, O, P and R ).
    Autophagy Activator Rapa, supplied by MedChemExpress, used in various techniques. Bioz Stars score: 99/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/autophagy activator rapa/product/MedChemExpress
    Average 99 stars, based on 1 article reviews
    autophagy activator rapa - by Bioz Stars, 2026-02
    99/100 stars
      Buy from Supplier

    96
    MedChemExpress autophagy inducer rapamycin
    SCS modulates mesenchymal stem cell lineage bias via activation of the IGF-1/PI3K/Akt/mTOR signaling pathway. ( A ) Quantitative analysis of osteocyte morphology in the trabecular bone matrix of the bone marrow at week 6 after MPS treatment with or without SCS, in the presence of various neutralizing antibodies (NAbs) and antagonistic proteins. ( B ) ELISA analysis of IGF-1 and BMP-2 levels in the femoral bone marrow and peripheral serum at day 7 following SCS treatment under MPS conditions. ( C and D ) Western blot analysis of phospho-PI3K, phospho-Akt, and phospho-mTOR (C), as well as phospho-Smad1/5/8, phospho-ERK, and phospho-p38 (D), in CD45 − Ter119 − CD31 − LepR + MSCs after 15-min stimulation with conditioned medium (CM) derived from bone marrow fluid at day 7 following SCS treatment. ( E – G ) Representative flow cytometry plots (E, F) and quantitative analysis (G) of CD45 − CD31 − Sca-1 + CD24 − adipocyte progenitor cells (APCs), CD45 − CD31 − Sca-1 + CD24 + MSCs (E), and CD45 − CD31 − Sca-1 − PDGFRα + (Pα + ) osteoprogenitor cells (OPCs) (F) from femoral bone marrow at day 14 post-MPS induction with or without combined treatment using SCS and IGF-1 NAb or Noggin. ( H and I ) Representative SA-β-Gal staining images (green) of the femur (H), and corresponding quantification (I), at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. Insets show magnified views of bone marrow (BM) and trabecular bone matrix (TBM) regions. (Scale bars, 100 μm and 25 μm) ( J ) qPCR analysis of 12 senescence-associated markers in ex vivo femoral bone tissues at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. ( K ) Representative Oil Red O staining images of CD45 − Ter119 − CD31 − LepR + MSCs sorted from femurs at day 7 following MPS treatment with SCS in combination with LY294002 or LDN-193189, after in vitro adipogenic induction. (Scale bars, 50 μm and 25 μm) ( L and M ) γ-H2A.X and telomere-associated DNA damage foci (TAFs) co-localization analysis (L), and corresponding quantification (M), in CD45 − Ter119 − CD31 + arteriolar ECs sorted from femurs at day 28 following MPS treatment with SCS in combination with <t>rapamycin</t> or LDN-193189, using immuno-FISH staining. (Scale bars, 7 μm and 1 μm) ( N and O ) Sequential fluorescent labeling using calcein (N) and quantification of mineral apposition rate (O) in femurs treated with SCS and MPS for 4 weeks, with or without LY294002 and/or GW9662. (Scale bars, 50 μm) ( P ) ELISA analysis of five senescence-associated cytokines in femoral bone marrow at day 28 following MPS treatment with SCS in combination with rapamycin and/or T0070907. ( Q and R ) Representative t-distributed stochastic neighbor embedding (t-SNE) plots (Q) from flow cytometric analysis of CD45 − CD31 − Sca-1 + CD24 − APCs, CD45 − CD31 − Sca-1 + CD24 + MSCs, CD45 − CD31 − Sca-1 − Pα + OPCs, CD45 − Ter119 − CD31 + arteriolar ECs, and CD45 − Ter119 − Emcn + sinusoidal ECs at day 14 following MPS treatment with SCS in combination with IGF-1 and/or rosiglitazone, and quantitative analysis of APCs (R) ( S ) Heatmap showing the fluorescent intensity distribution of Lamin-B1 expression across five cellular subpopulations as identified in the t-SNE clustering plot. ∗ P < 0.05 vs. IgG (empty lacunae); # P < 0.05 vs. IgG (filled lacunae). ∗ P < 0.05 vs. SCS; # P < 0.05 vs. SCS + IGF-1 NAb. Data are presented as mean ± SD. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001; ns, not significant. Statistical significance was determined using an unpaired two-tailed Student's t -test ( B ), or one-way ANOVA with Tukey's post hoc test ( A, G, I, J, O, P and R ).
    Autophagy Inducer Rapamycin, supplied by MedChemExpress, used in various techniques. Bioz Stars score: 96/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/autophagy inducer rapamycin/product/MedChemExpress
    Average 96 stars, based on 1 article reviews
    autophagy inducer rapamycin - by Bioz Stars, 2026-02
    96/100 stars
      Buy from Supplier

    Image Search Results


    SCS modulates mesenchymal stem cell lineage bias via activation of the IGF-1/PI3K/Akt/mTOR signaling pathway. ( A ) Quantitative analysis of osteocyte morphology in the trabecular bone matrix of the bone marrow at week 6 after MPS treatment with or without SCS, in the presence of various neutralizing antibodies (NAbs) and antagonistic proteins. ( B ) ELISA analysis of IGF-1 and BMP-2 levels in the femoral bone marrow and peripheral serum at day 7 following SCS treatment under MPS conditions. ( C and D ) Western blot analysis of phospho-PI3K, phospho-Akt, and phospho-mTOR (C), as well as phospho-Smad1/5/8, phospho-ERK, and phospho-p38 (D), in CD45 − Ter119 − CD31 − LepR + MSCs after 15-min stimulation with conditioned medium (CM) derived from bone marrow fluid at day 7 following SCS treatment. ( E – G ) Representative flow cytometry plots (E, F) and quantitative analysis (G) of CD45 − CD31 − Sca-1 + CD24 − adipocyte progenitor cells (APCs), CD45 − CD31 − Sca-1 + CD24 + MSCs (E), and CD45 − CD31 − Sca-1 − PDGFRα + (Pα + ) osteoprogenitor cells (OPCs) (F) from femoral bone marrow at day 14 post-MPS induction with or without combined treatment using SCS and IGF-1 NAb or Noggin. ( H and I ) Representative SA-β-Gal staining images (green) of the femur (H), and corresponding quantification (I), at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. Insets show magnified views of bone marrow (BM) and trabecular bone matrix (TBM) regions. (Scale bars, 100 μm and 25 μm) ( J ) qPCR analysis of 12 senescence-associated markers in ex vivo femoral bone tissues at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. ( K ) Representative Oil Red O staining images of CD45 − Ter119 − CD31 − LepR + MSCs sorted from femurs at day 7 following MPS treatment with SCS in combination with LY294002 or LDN-193189, after in vitro adipogenic induction. (Scale bars, 50 μm and 25 μm) ( L and M ) γ-H2A.X and telomere-associated DNA damage foci (TAFs) co-localization analysis (L), and corresponding quantification (M), in CD45 − Ter119 − CD31 + arteriolar ECs sorted from femurs at day 28 following MPS treatment with SCS in combination with rapamycin or LDN-193189, using immuno-FISH staining. (Scale bars, 7 μm and 1 μm) ( N and O ) Sequential fluorescent labeling using calcein (N) and quantification of mineral apposition rate (O) in femurs treated with SCS and MPS for 4 weeks, with or without LY294002 and/or GW9662. (Scale bars, 50 μm) ( P ) ELISA analysis of five senescence-associated cytokines in femoral bone marrow at day 28 following MPS treatment with SCS in combination with rapamycin and/or T0070907. ( Q and R ) Representative t-distributed stochastic neighbor embedding (t-SNE) plots (Q) from flow cytometric analysis of CD45 − CD31 − Sca-1 + CD24 − APCs, CD45 − CD31 − Sca-1 + CD24 + MSCs, CD45 − CD31 − Sca-1 − Pα + OPCs, CD45 − Ter119 − CD31 + arteriolar ECs, and CD45 − Ter119 − Emcn + sinusoidal ECs at day 14 following MPS treatment with SCS in combination with IGF-1 and/or rosiglitazone, and quantitative analysis of APCs (R) ( S ) Heatmap showing the fluorescent intensity distribution of Lamin-B1 expression across five cellular subpopulations as identified in the t-SNE clustering plot. ∗ P < 0.05 vs. IgG (empty lacunae); # P < 0.05 vs. IgG (filled lacunae). ∗ P < 0.05 vs. SCS; # P < 0.05 vs. SCS + IGF-1 NAb. Data are presented as mean ± SD. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001; ns, not significant. Statistical significance was determined using an unpaired two-tailed Student's t -test ( B ), or one-way ANOVA with Tukey's post hoc test ( A, G, I, J, O, P and R ).

    Journal: Bioactive Materials

    Article Title: Sulfated polysaccharide prevents senescent adipocyte-driven osteonecrosis by stem cell fate reprogramming

    doi: 10.1016/j.bioactmat.2025.11.039

    Figure Lengend Snippet: SCS modulates mesenchymal stem cell lineage bias via activation of the IGF-1/PI3K/Akt/mTOR signaling pathway. ( A ) Quantitative analysis of osteocyte morphology in the trabecular bone matrix of the bone marrow at week 6 after MPS treatment with or without SCS, in the presence of various neutralizing antibodies (NAbs) and antagonistic proteins. ( B ) ELISA analysis of IGF-1 and BMP-2 levels in the femoral bone marrow and peripheral serum at day 7 following SCS treatment under MPS conditions. ( C and D ) Western blot analysis of phospho-PI3K, phospho-Akt, and phospho-mTOR (C), as well as phospho-Smad1/5/8, phospho-ERK, and phospho-p38 (D), in CD45 − Ter119 − CD31 − LepR + MSCs after 15-min stimulation with conditioned medium (CM) derived from bone marrow fluid at day 7 following SCS treatment. ( E – G ) Representative flow cytometry plots (E, F) and quantitative analysis (G) of CD45 − CD31 − Sca-1 + CD24 − adipocyte progenitor cells (APCs), CD45 − CD31 − Sca-1 + CD24 + MSCs (E), and CD45 − CD31 − Sca-1 − PDGFRα + (Pα + ) osteoprogenitor cells (OPCs) (F) from femoral bone marrow at day 14 post-MPS induction with or without combined treatment using SCS and IGF-1 NAb or Noggin. ( H and I ) Representative SA-β-Gal staining images (green) of the femur (H), and corresponding quantification (I), at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. Insets show magnified views of bone marrow (BM) and trabecular bone matrix (TBM) regions. (Scale bars, 100 μm and 25 μm) ( J ) qPCR analysis of 12 senescence-associated markers in ex vivo femoral bone tissues at week 4 following MPS treatment with SCS in combination with IGF-1 NAb or DMH1. ( K ) Representative Oil Red O staining images of CD45 − Ter119 − CD31 − LepR + MSCs sorted from femurs at day 7 following MPS treatment with SCS in combination with LY294002 or LDN-193189, after in vitro adipogenic induction. (Scale bars, 50 μm and 25 μm) ( L and M ) γ-H2A.X and telomere-associated DNA damage foci (TAFs) co-localization analysis (L), and corresponding quantification (M), in CD45 − Ter119 − CD31 + arteriolar ECs sorted from femurs at day 28 following MPS treatment with SCS in combination with rapamycin or LDN-193189, using immuno-FISH staining. (Scale bars, 7 μm and 1 μm) ( N and O ) Sequential fluorescent labeling using calcein (N) and quantification of mineral apposition rate (O) in femurs treated with SCS and MPS for 4 weeks, with or without LY294002 and/or GW9662. (Scale bars, 50 μm) ( P ) ELISA analysis of five senescence-associated cytokines in femoral bone marrow at day 28 following MPS treatment with SCS in combination with rapamycin and/or T0070907. ( Q and R ) Representative t-distributed stochastic neighbor embedding (t-SNE) plots (Q) from flow cytometric analysis of CD45 − CD31 − Sca-1 + CD24 − APCs, CD45 − CD31 − Sca-1 + CD24 + MSCs, CD45 − CD31 − Sca-1 − Pα + OPCs, CD45 − Ter119 − CD31 + arteriolar ECs, and CD45 − Ter119 − Emcn + sinusoidal ECs at day 14 following MPS treatment with SCS in combination with IGF-1 and/or rosiglitazone, and quantitative analysis of APCs (R) ( S ) Heatmap showing the fluorescent intensity distribution of Lamin-B1 expression across five cellular subpopulations as identified in the t-SNE clustering plot. ∗ P < 0.05 vs. IgG (empty lacunae); # P < 0.05 vs. IgG (filled lacunae). ∗ P < 0.05 vs. SCS; # P < 0.05 vs. SCS + IGF-1 NAb. Data are presented as mean ± SD. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001; ns, not significant. Statistical significance was determined using an unpaired two-tailed Student's t -test ( B ), or one-way ANOVA with Tukey's post hoc test ( A, G, I, J, O, P and R ).

    Article Snippet: Other drugs and compounds used in this study included: GW9662 (MCE, HY-16578; intraperitoneal injection, 1 mg/kg body weight/day, administered continuously for 4 weeks), T0070907 (Selleck, S2871; intraperitoneal injection, 2 mg/kg body weight/day, administered continuously for 4 weeks), rapamycin (MCE, HY-10219; subcutaneous injection, 3 mg/kg body weight/day, administered continuously for 4 weeks), Rosiglitazone (MCE, HY-17386; oral gavage, 3 mg/kg body weight/day, administered continuously for 2 weeks), LY294002 (Selleck, S1105; intraosseous injection, 10 μM, 5 μL per dose per week, administered for 1 or 4 weeks), DMH1 (Selleck, S7146; intraperitoneal injection, 5 mg/kg body weight/day, administered continuously for 4 weeks), Noggin (PeproTech, 250-38; intraosseous injection, 50 ng per dose, twice per week, administered for 2 or 4 weeks), LDN-193189 (Selleck, S2618; intraperitoneal injection, 3 mg/kg body weight/day, administered for 1 or 4 weeks), IGF-1 (PeproTech, 250-19; intraosseous injection, 4 μg per dose per week, administered for 2 weeks), IGF-1 neutralizing antibody (R&D Systems, AF-791; intraosseous injection, 2 μg per dose, twice per week, administered for 2 or 4 weeks), VEGF neutralizing antibody (R&D Systems, AF-493-NA; intraosseous injection, 2 μg per dose, twice per week, administered for 4 weeks), PDGF-AA neutralizing antibody (R&D Systems, AF-221-NA; intraosseous injection, 2 μg per dose, twice per week, administered for 4 weeks), PDGF-BB neutralizing antibody (R&D Systems, AF-220-NA; intraosseous injection, 2 μg per dose, twice per week, administered for 4 weeks), TGF-β1 neutralizing antibody (R&D Systems, MAB2401; intraosseous injection, 2 μg per dose, twice per week, administered for 4 weeks), TGF-β2 neutralizing antibody (R&D Systems, AB-112-NA; intraosseous injection, 2 μg per dose, twice per week, administered for 4 weeks).

    Techniques: Activation Assay, Enzyme-linked Immunosorbent Assay, Western Blot, Derivative Assay, Flow Cytometry, Staining, Ex Vivo, In Vitro, Labeling, Expressing, Two Tailed Test