Review



thiolutin  (MedChemExpress)


Bioz Verified Symbol MedChemExpress is a verified supplier
Bioz Manufacturer Symbol MedChemExpress manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 92

    Structured Review

    MedChemExpress thiolutin
    PSMD14 regulates IMPDH2 stability through selective removal of K48-linked ubiquitin chains. (A-C) Western blotting analysis of ubiquitin conjugates in LN229 cells with PSMD14 knockdown. (D-F) Western blotting analysis of ubiquitin conjugates in GBM#P3 cells with PSMD14 knockdown. (G, H) Ubiquitination status of IMPDH2 upon PSMD14 inhibition. GBM cells were treated with the PSMD14 inhibitor <t>thiolutin</t> in the presence of MG132. (I-L) Domain mapping of PSMD14's deubiquitinating function. GBM cells were co-transfected with wild-type PSMD14 or N-terminal truncation mutants along with plasmids encoding Myc-tagged ubiquitin.
    Thiolutin, supplied by MedChemExpress, used in various techniques. Bioz Stars score: 92/100, based on 4 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/thiolutin/product/MedChemExpress
    Average 92 stars, based on 4 article reviews
    thiolutin - by Bioz Stars, 2026-02
    92/100 stars

    Images

    1) Product Images from "Coupling proteostasis and de novo purine biosynthesis of PSMD14 fuels glioblastoma progression and chemoresistance"

    Article Title: Coupling proteostasis and de novo purine biosynthesis of PSMD14 fuels glioblastoma progression and chemoresistance

    Journal: Theranostics

    doi: 10.7150/thno.124409

    PSMD14 regulates IMPDH2 stability through selective removal of K48-linked ubiquitin chains. (A-C) Western blotting analysis of ubiquitin conjugates in LN229 cells with PSMD14 knockdown. (D-F) Western blotting analysis of ubiquitin conjugates in GBM#P3 cells with PSMD14 knockdown. (G, H) Ubiquitination status of IMPDH2 upon PSMD14 inhibition. GBM cells were treated with the PSMD14 inhibitor thiolutin in the presence of MG132. (I-L) Domain mapping of PSMD14's deubiquitinating function. GBM cells were co-transfected with wild-type PSMD14 or N-terminal truncation mutants along with plasmids encoding Myc-tagged ubiquitin.
    Figure Legend Snippet: PSMD14 regulates IMPDH2 stability through selective removal of K48-linked ubiquitin chains. (A-C) Western blotting analysis of ubiquitin conjugates in LN229 cells with PSMD14 knockdown. (D-F) Western blotting analysis of ubiquitin conjugates in GBM#P3 cells with PSMD14 knockdown. (G, H) Ubiquitination status of IMPDH2 upon PSMD14 inhibition. GBM cells were treated with the PSMD14 inhibitor thiolutin in the presence of MG132. (I-L) Domain mapping of PSMD14's deubiquitinating function. GBM cells were co-transfected with wild-type PSMD14 or N-terminal truncation mutants along with plasmids encoding Myc-tagged ubiquitin.

    Techniques Used: Ubiquitin Proteomics, Western Blot, Knockdown, Inhibition, Transfection

    Pharmacological inhibition of PSMD14 with thiolutin reduces tumor burden and synergizes with temozolomide in GBM. (A) IC50 curves of Thiolutin in the GBM#P3, U118, and LN229 cell lines. (B) Time-course of cell viability in GBM cells with ectopic PSMD14 overexpression or empty vector control, in the presence of DMSO or thiolutin. (C) Quantification of cell viability (OD values) on Day 4 (n = 3). ***P <0.001 (one-way ANOVA). (D) Representative bioluminescence images of intracranial GBM#P3 xenograft-bearing mice at Days 7 and 28 post-implantation. Mice were treated with vehicle or thiolutin, with or without PSMD14 overexpression in the implanted cells. (E) Quantification of total photon flux from intracranial tumors at Day 28. Data are presented as mean ± SD (n = 5 per group). ***P <0.001 (one-way ANOVA). (F) Kaplan-Meier survival analysis of mice bearing intracranial tumors under the indicated treatments (n = 10 per group). (G) Representative HE is staining of brain sections from tumor-bearing mice across treatment groups. Scale bar = 2.5 mm. (H) IHC staining for PSMD14 and IMPDH2 in brain tumor sections from the orthotopic xenografts. Scale bar = 100 μm. (I) Representative IF images of tumor tissues from the xenograft models. Scale bar = 100 μm. (J) Cell viability curves for GBM cells treated for 4 days with vehicle (DMSO), TMZ, thiolutin, or the combination of TMZ + thiolutin. (K) Quantification of cell viability (OD) at Day 4. Data are presented as mean ± SD (n = 3). ***P <0.001 (one-way ANOVA). (L) Bioluminescent imaging of intracranial tumors in mice treated with vehicle, TMZ, or TMZ + thiolutin on Days 7 and 28 post-implantation. (M) Quantification of photon flux at Day 28. Data are presented as mean ± SD (n = 5 per group). *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA). (N) Representative IHC images of PSMD14 and IMPDH2 in tumor tissues from mice treated with TMZ alone or TMZ + thiolutin. Scale bar = 100 μm.
    Figure Legend Snippet: Pharmacological inhibition of PSMD14 with thiolutin reduces tumor burden and synergizes with temozolomide in GBM. (A) IC50 curves of Thiolutin in the GBM#P3, U118, and LN229 cell lines. (B) Time-course of cell viability in GBM cells with ectopic PSMD14 overexpression or empty vector control, in the presence of DMSO or thiolutin. (C) Quantification of cell viability (OD values) on Day 4 (n = 3). ***P <0.001 (one-way ANOVA). (D) Representative bioluminescence images of intracranial GBM#P3 xenograft-bearing mice at Days 7 and 28 post-implantation. Mice were treated with vehicle or thiolutin, with or without PSMD14 overexpression in the implanted cells. (E) Quantification of total photon flux from intracranial tumors at Day 28. Data are presented as mean ± SD (n = 5 per group). ***P <0.001 (one-way ANOVA). (F) Kaplan-Meier survival analysis of mice bearing intracranial tumors under the indicated treatments (n = 10 per group). (G) Representative HE is staining of brain sections from tumor-bearing mice across treatment groups. Scale bar = 2.5 mm. (H) IHC staining for PSMD14 and IMPDH2 in brain tumor sections from the orthotopic xenografts. Scale bar = 100 μm. (I) Representative IF images of tumor tissues from the xenograft models. Scale bar = 100 μm. (J) Cell viability curves for GBM cells treated for 4 days with vehicle (DMSO), TMZ, thiolutin, or the combination of TMZ + thiolutin. (K) Quantification of cell viability (OD) at Day 4. Data are presented as mean ± SD (n = 3). ***P <0.001 (one-way ANOVA). (L) Bioluminescent imaging of intracranial tumors in mice treated with vehicle, TMZ, or TMZ + thiolutin on Days 7 and 28 post-implantation. (M) Quantification of photon flux at Day 28. Data are presented as mean ± SD (n = 5 per group). *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA). (N) Representative IHC images of PSMD14 and IMPDH2 in tumor tissues from mice treated with TMZ alone or TMZ + thiolutin. Scale bar = 100 μm.

    Techniques Used: Inhibition, Over Expression, Plasmid Preparation, Control, Staining, Immunohistochemistry, Imaging



    Similar Products

    92
    MedChemExpress thiolutin
    PSMD14 regulates IMPDH2 stability through selective removal of K48-linked ubiquitin chains. (A-C) Western blotting analysis of ubiquitin conjugates in LN229 cells with PSMD14 knockdown. (D-F) Western blotting analysis of ubiquitin conjugates in GBM#P3 cells with PSMD14 knockdown. (G, H) Ubiquitination status of IMPDH2 upon PSMD14 inhibition. GBM cells were treated with the PSMD14 inhibitor <t>thiolutin</t> in the presence of MG132. (I-L) Domain mapping of PSMD14's deubiquitinating function. GBM cells were co-transfected with wild-type PSMD14 or N-terminal truncation mutants along with plasmids encoding Myc-tagged ubiquitin.
    Thiolutin, supplied by MedChemExpress, used in various techniques. Bioz Stars score: 92/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/thiolutin/product/MedChemExpress
    Average 92 stars, based on 1 article reviews
    thiolutin - by Bioz Stars, 2026-02
    92/100 stars
      Buy from Supplier

    90
    Merck KGaA thiolutin
    PSMD14 regulates IMPDH2 stability through selective removal of K48-linked ubiquitin chains. (A-C) Western blotting analysis of ubiquitin conjugates in LN229 cells with PSMD14 knockdown. (D-F) Western blotting analysis of ubiquitin conjugates in GBM#P3 cells with PSMD14 knockdown. (G, H) Ubiquitination status of IMPDH2 upon PSMD14 inhibition. GBM cells were treated with the PSMD14 inhibitor <t>thiolutin</t> in the presence of MG132. (I-L) Domain mapping of PSMD14's deubiquitinating function. GBM cells were co-transfected with wild-type PSMD14 or N-terminal truncation mutants along with plasmids encoding Myc-tagged ubiquitin.
    Thiolutin, supplied by Merck KGaA, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/thiolutin/product/Merck KGaA
    Average 90 stars, based on 1 article reviews
    thiolutin - by Bioz Stars, 2026-02
    90/100 stars
      Buy from Supplier

    94
    TargetMol thiolutin
    PSMD14 regulates IMPDH2 stability through selective removal of K48-linked ubiquitin chains. (A-C) Western blotting analysis of ubiquitin conjugates in LN229 cells with PSMD14 knockdown. (D-F) Western blotting analysis of ubiquitin conjugates in GBM#P3 cells with PSMD14 knockdown. (G, H) Ubiquitination status of IMPDH2 upon PSMD14 inhibition. GBM cells were treated with the PSMD14 inhibitor <t>thiolutin</t> in the presence of MG132. (I-L) Domain mapping of PSMD14's deubiquitinating function. GBM cells were co-transfected with wild-type PSMD14 or N-terminal truncation mutants along with plasmids encoding Myc-tagged ubiquitin.
    Thiolutin, supplied by TargetMol, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/thiolutin/product/TargetMol
    Average 94 stars, based on 1 article reviews
    thiolutin - by Bioz Stars, 2026-02
    94/100 stars
      Buy from Supplier

    90
    Cayman Chemical thiolutin thl
    Pharmacological inhibition of <t>BRISC</t> attenuates alcoholic liver steatosis and injury. Mice were subjected to chronic-plus-binge ethanol feeding for 4 weeks. Mice were treated <t>with</t> <t>THL</t> (1 mg/kg by intraperitoneal injection) or vehicle control (DMSO/PBS) ( N = 3–7). (A) Liver samples were stained with H&E or ORO, and ORO-positive areas were quantified. Scale bar, 100 μm. (B , C) Liver injury and steatosis were quantified by measuring serum ALT and liver triglyceride content. (D) Hepatic TNF-α expression was evaluated by real-time PCR. (E) IHC staining analysis of Ly6G + cells in liver. Representative IHC images and quantification of positive areas were shown; Scale bar, 50 μm. Data are presented as mean ± SEM; * P < 0.05, ** P < 0.01, *** P < 0.001; two-tailed unpaired t -test.
    Thiolutin Thl, supplied by Cayman Chemical, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/thiolutin thl/product/Cayman Chemical
    Average 90 stars, based on 1 article reviews
    thiolutin thl - by Bioz Stars, 2026-02
    90/100 stars
      Buy from Supplier

    90
    Biomol GmbH thiolutin (biomol)
    Pharmacological inhibition of <t>BRISC</t> attenuates alcoholic liver steatosis and injury. Mice were subjected to chronic-plus-binge ethanol feeding for 4 weeks. Mice were treated <t>with</t> <t>THL</t> (1 mg/kg by intraperitoneal injection) or vehicle control (DMSO/PBS) ( N = 3–7). (A) Liver samples were stained with H&E or ORO, and ORO-positive areas were quantified. Scale bar, 100 μm. (B , C) Liver injury and steatosis were quantified by measuring serum ALT and liver triglyceride content. (D) Hepatic TNF-α expression was evaluated by real-time PCR. (E) IHC staining analysis of Ly6G + cells in liver. Representative IHC images and quantification of positive areas were shown; Scale bar, 50 μm. Data are presented as mean ± SEM; * P < 0.05, ** P < 0.01, *** P < 0.001; two-tailed unpaired t -test.
    Thiolutin (Biomol), supplied by Biomol GmbH, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/thiolutin (biomol)/product/Biomol GmbH
    Average 90 stars, based on 1 article reviews
    thiolutin (biomol) - by Bioz Stars, 2026-02
    90/100 stars
      Buy from Supplier

    90
    Biomol GmbH thiolutin
    ( A ) RT-qPCR was used to quantify the mRNA concentrations of the core histone genes and the control genes ACT1 and MDN1 in different nutrient conditions. mRNA concentrations were normalized on RDN18 and are shown as mean fold changes compared to YPD. Error bars indicate standard errors of at least four independent biological replicates. Significances were determined by an unpaired, two-tailed t -test for datasets that follow a Gaussian distribution or a Mann–Whitney test for datasets that are not normally distributed; HTB1 (* p YPD-SCGE = 0.012, * p SCD-SCGE = 0.030); HTB2 (* p YPD-SCGE = 0.012, * p YPD-SCD = 0.026, * p SCD-SCGE = 0.034); HTA1 (* p YPD-SCGE = 0.030); HTA2 (* p YPD-SCGE = 0.034); HHF1 (* p YPD-SCGE = 0.015, * p YPD-SCD = 0.028); HHF2 (* p YPD-SCGE = 0.014, * p YPD-SCD = 0.034); HHT2 (** p YPD-SCGE = 0.0013, * p YPD-SCD = 0.028). ( B ) Relative mRNA concentrations of HTB1 , HTB2 , and ACT1 as a function of the relative nutrient-specific cell volume. The mean and standard error of at least four biological replicates are shown. ( C ) Cells carrying CDC20 under the control of a β-estradiol-inducible promoter were synchronized in mitosis. In the absence of β-estradiol, the expression of Cdc20 was turned off, preventing the cells from entering anaphase and exiting mitosis. ( D – F ) mRNA concentrations of HTB1 , HTB2 , and MDN1 (normalized to RDN18 ) were measured by RT-qPCR after synchronous release into the cell cycle ( t = 0) triggered by the addition of 200 nM β-estradiol. Mean and standard deviation of four biological replicates are shown. ( G ) Transcription inhibition experiments suggest that histone mRNA stability increases in poor nutrient conditions. mRNA half-lives of HTB1 , HTB2 , and ACT1 were determined by adding the RNA polymerase inhibitor <t>thiolutin</t> to cells growing in different growth media and then measuring mRNA concentrations (normalized on RDN18 ) over time by RT-qPCR. Relative mRNA concentrations were normalized on the initial concentration at time = 0. For each time point, the mean and standard deviation of at least four biological replicates is plotted. Lines show single exponential fits to the individual data points of all replicates. .
    Thiolutin, supplied by Biomol GmbH, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/thiolutin/product/Biomol GmbH
    Average 90 stars, based on 1 article reviews
    thiolutin - by Bioz Stars, 2026-02
    90/100 stars
      Buy from Supplier

    Image Search Results


    PSMD14 regulates IMPDH2 stability through selective removal of K48-linked ubiquitin chains. (A-C) Western blotting analysis of ubiquitin conjugates in LN229 cells with PSMD14 knockdown. (D-F) Western blotting analysis of ubiquitin conjugates in GBM#P3 cells with PSMD14 knockdown. (G, H) Ubiquitination status of IMPDH2 upon PSMD14 inhibition. GBM cells were treated with the PSMD14 inhibitor thiolutin in the presence of MG132. (I-L) Domain mapping of PSMD14's deubiquitinating function. GBM cells were co-transfected with wild-type PSMD14 or N-terminal truncation mutants along with plasmids encoding Myc-tagged ubiquitin.

    Journal: Theranostics

    Article Title: Coupling proteostasis and de novo purine biosynthesis of PSMD14 fuels glioblastoma progression and chemoresistance

    doi: 10.7150/thno.124409

    Figure Lengend Snippet: PSMD14 regulates IMPDH2 stability through selective removal of K48-linked ubiquitin chains. (A-C) Western blotting analysis of ubiquitin conjugates in LN229 cells with PSMD14 knockdown. (D-F) Western blotting analysis of ubiquitin conjugates in GBM#P3 cells with PSMD14 knockdown. (G, H) Ubiquitination status of IMPDH2 upon PSMD14 inhibition. GBM cells were treated with the PSMD14 inhibitor thiolutin in the presence of MG132. (I-L) Domain mapping of PSMD14's deubiquitinating function. GBM cells were co-transfected with wild-type PSMD14 or N-terminal truncation mutants along with plasmids encoding Myc-tagged ubiquitin.

    Article Snippet: Where specified, cells were pre-treated with cycloheximide (25 μg/mL for 9 h; HY-123320; MedChemExpress), MG132 (10 μM for 8 h; #474790; Sigma-Aldrich), or thiolutin (2 μM for 8 h; HY-N6712; MedChemExpress) prior to lysis.

    Techniques: Ubiquitin Proteomics, Western Blot, Knockdown, Inhibition, Transfection

    Pharmacological inhibition of PSMD14 with thiolutin reduces tumor burden and synergizes with temozolomide in GBM. (A) IC50 curves of Thiolutin in the GBM#P3, U118, and LN229 cell lines. (B) Time-course of cell viability in GBM cells with ectopic PSMD14 overexpression or empty vector control, in the presence of DMSO or thiolutin. (C) Quantification of cell viability (OD values) on Day 4 (n = 3). ***P <0.001 (one-way ANOVA). (D) Representative bioluminescence images of intracranial GBM#P3 xenograft-bearing mice at Days 7 and 28 post-implantation. Mice were treated with vehicle or thiolutin, with or without PSMD14 overexpression in the implanted cells. (E) Quantification of total photon flux from intracranial tumors at Day 28. Data are presented as mean ± SD (n = 5 per group). ***P <0.001 (one-way ANOVA). (F) Kaplan-Meier survival analysis of mice bearing intracranial tumors under the indicated treatments (n = 10 per group). (G) Representative HE is staining of brain sections from tumor-bearing mice across treatment groups. Scale bar = 2.5 mm. (H) IHC staining for PSMD14 and IMPDH2 in brain tumor sections from the orthotopic xenografts. Scale bar = 100 μm. (I) Representative IF images of tumor tissues from the xenograft models. Scale bar = 100 μm. (J) Cell viability curves for GBM cells treated for 4 days with vehicle (DMSO), TMZ, thiolutin, or the combination of TMZ + thiolutin. (K) Quantification of cell viability (OD) at Day 4. Data are presented as mean ± SD (n = 3). ***P <0.001 (one-way ANOVA). (L) Bioluminescent imaging of intracranial tumors in mice treated with vehicle, TMZ, or TMZ + thiolutin on Days 7 and 28 post-implantation. (M) Quantification of photon flux at Day 28. Data are presented as mean ± SD (n = 5 per group). *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA). (N) Representative IHC images of PSMD14 and IMPDH2 in tumor tissues from mice treated with TMZ alone or TMZ + thiolutin. Scale bar = 100 μm.

    Journal: Theranostics

    Article Title: Coupling proteostasis and de novo purine biosynthesis of PSMD14 fuels glioblastoma progression and chemoresistance

    doi: 10.7150/thno.124409

    Figure Lengend Snippet: Pharmacological inhibition of PSMD14 with thiolutin reduces tumor burden and synergizes with temozolomide in GBM. (A) IC50 curves of Thiolutin in the GBM#P3, U118, and LN229 cell lines. (B) Time-course of cell viability in GBM cells with ectopic PSMD14 overexpression or empty vector control, in the presence of DMSO or thiolutin. (C) Quantification of cell viability (OD values) on Day 4 (n = 3). ***P <0.001 (one-way ANOVA). (D) Representative bioluminescence images of intracranial GBM#P3 xenograft-bearing mice at Days 7 and 28 post-implantation. Mice were treated with vehicle or thiolutin, with or without PSMD14 overexpression in the implanted cells. (E) Quantification of total photon flux from intracranial tumors at Day 28. Data are presented as mean ± SD (n = 5 per group). ***P <0.001 (one-way ANOVA). (F) Kaplan-Meier survival analysis of mice bearing intracranial tumors under the indicated treatments (n = 10 per group). (G) Representative HE is staining of brain sections from tumor-bearing mice across treatment groups. Scale bar = 2.5 mm. (H) IHC staining for PSMD14 and IMPDH2 in brain tumor sections from the orthotopic xenografts. Scale bar = 100 μm. (I) Representative IF images of tumor tissues from the xenograft models. Scale bar = 100 μm. (J) Cell viability curves for GBM cells treated for 4 days with vehicle (DMSO), TMZ, thiolutin, or the combination of TMZ + thiolutin. (K) Quantification of cell viability (OD) at Day 4. Data are presented as mean ± SD (n = 3). ***P <0.001 (one-way ANOVA). (L) Bioluminescent imaging of intracranial tumors in mice treated with vehicle, TMZ, or TMZ + thiolutin on Days 7 and 28 post-implantation. (M) Quantification of photon flux at Day 28. Data are presented as mean ± SD (n = 5 per group). *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA). (N) Representative IHC images of PSMD14 and IMPDH2 in tumor tissues from mice treated with TMZ alone or TMZ + thiolutin. Scale bar = 100 μm.

    Article Snippet: Where specified, cells were pre-treated with cycloheximide (25 μg/mL for 9 h; HY-123320; MedChemExpress), MG132 (10 μM for 8 h; #474790; Sigma-Aldrich), or thiolutin (2 μM for 8 h; HY-N6712; MedChemExpress) prior to lysis.

    Techniques: Inhibition, Over Expression, Plasmid Preparation, Control, Staining, Immunohistochemistry, Imaging

    Pharmacological inhibition of BRISC attenuates alcoholic liver steatosis and injury. Mice were subjected to chronic-plus-binge ethanol feeding for 4 weeks. Mice were treated with THL (1 mg/kg by intraperitoneal injection) or vehicle control (DMSO/PBS) ( N = 3–7). (A) Liver samples were stained with H&E or ORO, and ORO-positive areas were quantified. Scale bar, 100 μm. (B , C) Liver injury and steatosis were quantified by measuring serum ALT and liver triglyceride content. (D) Hepatic TNF-α expression was evaluated by real-time PCR. (E) IHC staining analysis of Ly6G + cells in liver. Representative IHC images and quantification of positive areas were shown; Scale bar, 50 μm. Data are presented as mean ± SEM; * P < 0.05, ** P < 0.01, *** P < 0.001; two-tailed unpaired t -test.

    Journal: Scientific Reports

    Article Title: BRISC inactivation alleviates alcohol-induced liver injury in mice

    doi: 10.1038/s41598-025-89796-2

    Figure Lengend Snippet: Pharmacological inhibition of BRISC attenuates alcoholic liver steatosis and injury. Mice were subjected to chronic-plus-binge ethanol feeding for 4 weeks. Mice were treated with THL (1 mg/kg by intraperitoneal injection) or vehicle control (DMSO/PBS) ( N = 3–7). (A) Liver samples were stained with H&E or ORO, and ORO-positive areas were quantified. Scale bar, 100 μm. (B , C) Liver injury and steatosis were quantified by measuring serum ALT and liver triglyceride content. (D) Hepatic TNF-α expression was evaluated by real-time PCR. (E) IHC staining analysis of Ly6G + cells in liver. Representative IHC images and quantification of positive areas were shown; Scale bar, 50 μm. Data are presented as mean ± SEM; * P < 0.05, ** P < 0.01, *** P < 0.001; two-tailed unpaired t -test.

    Article Snippet: For a period of 4 weeks, wild-type mice were administered the Lieber-DeCarli ad libitum diet and concurrently treated with either a single dose of the small molecule inhibitor of BRISC complex, thiolutin (THL, 1 mg/kg, Cayman, 11350) or a vehicle control (DMSO/PBS) intraperitoneally.

    Techniques: Inhibition, Injection, Control, Staining, Expressing, Real-time Polymerase Chain Reaction, Immunohistochemistry, Two Tailed Test

    ( A ) RT-qPCR was used to quantify the mRNA concentrations of the core histone genes and the control genes ACT1 and MDN1 in different nutrient conditions. mRNA concentrations were normalized on RDN18 and are shown as mean fold changes compared to YPD. Error bars indicate standard errors of at least four independent biological replicates. Significances were determined by an unpaired, two-tailed t -test for datasets that follow a Gaussian distribution or a Mann–Whitney test for datasets that are not normally distributed; HTB1 (* p YPD-SCGE = 0.012, * p SCD-SCGE = 0.030); HTB2 (* p YPD-SCGE = 0.012, * p YPD-SCD = 0.026, * p SCD-SCGE = 0.034); HTA1 (* p YPD-SCGE = 0.030); HTA2 (* p YPD-SCGE = 0.034); HHF1 (* p YPD-SCGE = 0.015, * p YPD-SCD = 0.028); HHF2 (* p YPD-SCGE = 0.014, * p YPD-SCD = 0.034); HHT2 (** p YPD-SCGE = 0.0013, * p YPD-SCD = 0.028). ( B ) Relative mRNA concentrations of HTB1 , HTB2 , and ACT1 as a function of the relative nutrient-specific cell volume. The mean and standard error of at least four biological replicates are shown. ( C ) Cells carrying CDC20 under the control of a β-estradiol-inducible promoter were synchronized in mitosis. In the absence of β-estradiol, the expression of Cdc20 was turned off, preventing the cells from entering anaphase and exiting mitosis. ( D – F ) mRNA concentrations of HTB1 , HTB2 , and MDN1 (normalized to RDN18 ) were measured by RT-qPCR after synchronous release into the cell cycle ( t = 0) triggered by the addition of 200 nM β-estradiol. Mean and standard deviation of four biological replicates are shown. ( G ) Transcription inhibition experiments suggest that histone mRNA stability increases in poor nutrient conditions. mRNA half-lives of HTB1 , HTB2 , and ACT1 were determined by adding the RNA polymerase inhibitor thiolutin to cells growing in different growth media and then measuring mRNA concentrations (normalized on RDN18 ) over time by RT-qPCR. Relative mRNA concentrations were normalized on the initial concentration at time = 0. For each time point, the mean and standard deviation of at least four biological replicates is plotted. Lines show single exponential fits to the individual data points of all replicates. .

    Journal: The EMBO Journal

    Article Title: Decoupled transcript and protein concentrations ensure histone homeostasis in different nutrients

    doi: 10.1038/s44318-024-00227-w

    Figure Lengend Snippet: ( A ) RT-qPCR was used to quantify the mRNA concentrations of the core histone genes and the control genes ACT1 and MDN1 in different nutrient conditions. mRNA concentrations were normalized on RDN18 and are shown as mean fold changes compared to YPD. Error bars indicate standard errors of at least four independent biological replicates. Significances were determined by an unpaired, two-tailed t -test for datasets that follow a Gaussian distribution or a Mann–Whitney test for datasets that are not normally distributed; HTB1 (* p YPD-SCGE = 0.012, * p SCD-SCGE = 0.030); HTB2 (* p YPD-SCGE = 0.012, * p YPD-SCD = 0.026, * p SCD-SCGE = 0.034); HTA1 (* p YPD-SCGE = 0.030); HTA2 (* p YPD-SCGE = 0.034); HHF1 (* p YPD-SCGE = 0.015, * p YPD-SCD = 0.028); HHF2 (* p YPD-SCGE = 0.014, * p YPD-SCD = 0.034); HHT2 (** p YPD-SCGE = 0.0013, * p YPD-SCD = 0.028). ( B ) Relative mRNA concentrations of HTB1 , HTB2 , and ACT1 as a function of the relative nutrient-specific cell volume. The mean and standard error of at least four biological replicates are shown. ( C ) Cells carrying CDC20 under the control of a β-estradiol-inducible promoter were synchronized in mitosis. In the absence of β-estradiol, the expression of Cdc20 was turned off, preventing the cells from entering anaphase and exiting mitosis. ( D – F ) mRNA concentrations of HTB1 , HTB2 , and MDN1 (normalized to RDN18 ) were measured by RT-qPCR after synchronous release into the cell cycle ( t = 0) triggered by the addition of 200 nM β-estradiol. Mean and standard deviation of four biological replicates are shown. ( G ) Transcription inhibition experiments suggest that histone mRNA stability increases in poor nutrient conditions. mRNA half-lives of HTB1 , HTB2 , and ACT1 were determined by adding the RNA polymerase inhibitor thiolutin to cells growing in different growth media and then measuring mRNA concentrations (normalized on RDN18 ) over time by RT-qPCR. Relative mRNA concentrations were normalized on the initial concentration at time = 0. For each time point, the mean and standard deviation of at least four biological replicates is plotted. Lines show single exponential fits to the individual data points of all replicates. .

    Article Snippet: As an additional negative control, global transcription in wild-type cells was blocked by an 80-min treatment with 8 μg/mL thiolutin (Biomol) (see above) prior to incubation with MDN1 probes (Fig. ).

    Techniques: Quantitative RT-PCR, Control, Two Tailed Test, MANN-WHITNEY, Expressing, Standard Deviation, Inhibition, Concentration Assay

    ( A – F ) Wild-type cells were incubated with or without smFISH probes against ACT1 ( A – C ) or MDN1 ( D – F ), ACT1, MDN1 ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{YPD}}}$$\end{document} n G 1 YPD = 48, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{YPD}}}$$\end{document} n S YPD = 54, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{YPD}}}$$\end{document} n G 2 M YPD = 74, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCD}}}$$\end{document} n G 1 SCD = 26, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCD}}}$$\end{document} n S SCD = 31, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCD}}}$$\end{document} n G 2 M SCD = 30, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCGE}}}$$\end{document} n G 1 SCGE = 26, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCGE}}}$$\end{document} n S SCGE = 23, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCGE}}}$$\end{document} n G 2 M SCGE = 49); no probes ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{YPD}}}$$\end{document} n G 1 YPD = 49, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{YPD}}}$$\end{document} n S YPD = 40, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{YPD}}}$$\end{document} n G 2 M YPD = 43, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCD}}}$$\end{document} n G 1 SCD = 28, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCD}}}$$\end{document} n S SCD = 27, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCD}}}$$\end{document} n G 2 M SCD = 52, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCGE}}}$$\end{document} n G 1 SCGE = 24, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCGE}}}$$\end{document} n S SCGE = 30, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCGE}}}$$\end{document} n G 2 M SCGE = 16). ( G ) Wild-type cells were treated with thiolutin for 80 min to inhibit global transcription prior to incubation with MDN1 probes. mRNA concentrations in G1, S, and G2/M were estimated by dividing the number of detected spots by the cell volume ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{MDN}1}$$\end{document} n G 1 M D N 1 = 14, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{MDN}1}$$\end{document} n S M D N 1 = 42, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{MDN}1}$$\end{document} n G 2 M M D N 1 = 40, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{MDN}1{\rm{, after transcr. inhibition}}}$$\end{document} n G 1 M D N 1 ,aftertranscr.inhibition = 57, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{MDN}1,{\rm{after transcr. inhibition}}}$$\end{document} n S M D N 1 , aftertranscr.inhibition = 40, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{MDN}1,{\rm{after transcr. inhibition}}}$$\end{document} n G 2 M M D N 1 , aftertranscr.inhibition = 34). ( H – J ) Wild-type cells expressing no mCitrine, as well as cells carrying an additional copy of the HTB1, HTB2 , or ACT1 promoter driving mCitrine were incubated with smFISH probes against mCitrine . mRNA concentrations in G1, S, and G2/M were estimated by dividing the number of detected spots by the cell volume. Box plots represent median and 25th and 75th percentiles; whiskers indicate the 5th and 95th percentiles and symbols show outliers; HTB1prom-mCitrine ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{YPD}}}$$\end{document} n G 1 YPD = 58, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{YPD}}}$$\end{document} n S YPD = 49, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{YPD}}}$$\end{document} n G 2 M YPD = 41, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCD}}}$$\end{document} n G 1 SCD = 54, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCD}}}$$\end{document} n S SCD = 51, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCD}}}\,$$\end{document} n G 2 M SCD = 53, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCGE}}}$$\end{document} n G 1 SCGE = 28, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCGE}}}$$\end{document} n S SCGE = 39, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCGE}}}$$\end{document} n G 2 M SCGE = 28); HTB2prom-mCitrine ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{YPD}}}$$\end{document} n G 1 YPD = 37, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{YPD}}}$$\end{document} n S YPD = 64, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{YPD}}}$$\end{document} n G 2 M YPD = 59, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCD}}}$$\end{document} n G 1 SCD = 85, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCD}}}$$\end{document} n S SCD = 59, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCD}}}$$\end{document} n G 2 M SCD = 50, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCGE}}}$$\end{document} n G 1 SCGE = 65, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCGE}}}$$\end{document} n S SCGE = 50, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCGE}}}$$\end{document} n G 2 M SCGE = 55); ACT1prom-mCitrine ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{YPD}}}$$\end{document} n G 1 YPD = 35, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{YPD}}}$$\end{document} n S YPD = 59, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{YPD}}}$$\end{document} n G 2 M YPD = 41, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCD}}}$$\end{document} n G 1 SCD = 38, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCD}}}$$\end{document} n S SCD = 75, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCD}}}$$\end{document} n G 2 M SCD = 42, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCGE}}}$$\end{document} n G 1 SCGE = 37, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCGE}}}$$\end{document} n S SCGE = 33, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCGE}}}$$\end{document} n G 2 M SCGE = 54); no mCitrine ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{YPD}}}$$\end{document} n G 1 YPD = 15, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{YPD}}}$$\end{document} n S YPD = 28, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{YPD}}}$$\end{document} n G 2 M YPD = 37, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCD}}}$$\end{document} n G 1 SCD = 32, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCD}}}$$\end{document} n S SCD = 30, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCD}}}$$\end{document} n G 2 M SCD = 48, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCGE}}}$$\end{document} n G 1 SCGE = 26, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCGE}}}$$\end{document} n S SCGE = 49, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCGE}}}$$\end{document} n G 2 M SCGE = 31).

    Journal: The EMBO Journal

    Article Title: Decoupled transcript and protein concentrations ensure histone homeostasis in different nutrients

    doi: 10.1038/s44318-024-00227-w

    Figure Lengend Snippet: ( A – F ) Wild-type cells were incubated with or without smFISH probes against ACT1 ( A – C ) or MDN1 ( D – F ), ACT1, MDN1 ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{YPD}}}$$\end{document} n G 1 YPD = 48, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{YPD}}}$$\end{document} n S YPD = 54, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{YPD}}}$$\end{document} n G 2 M YPD = 74, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCD}}}$$\end{document} n G 1 SCD = 26, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCD}}}$$\end{document} n S SCD = 31, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCD}}}$$\end{document} n G 2 M SCD = 30, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCGE}}}$$\end{document} n G 1 SCGE = 26, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCGE}}}$$\end{document} n S SCGE = 23, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCGE}}}$$\end{document} n G 2 M SCGE = 49); no probes ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{YPD}}}$$\end{document} n G 1 YPD = 49, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{YPD}}}$$\end{document} n S YPD = 40, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{YPD}}}$$\end{document} n G 2 M YPD = 43, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCD}}}$$\end{document} n G 1 SCD = 28, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCD}}}$$\end{document} n S SCD = 27, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCD}}}$$\end{document} n G 2 M SCD = 52, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCGE}}}$$\end{document} n G 1 SCGE = 24, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCGE}}}$$\end{document} n S SCGE = 30, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCGE}}}$$\end{document} n G 2 M SCGE = 16). ( G ) Wild-type cells were treated with thiolutin for 80 min to inhibit global transcription prior to incubation with MDN1 probes. mRNA concentrations in G1, S, and G2/M were estimated by dividing the number of detected spots by the cell volume ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{MDN}1}$$\end{document} n G 1 M D N 1 = 14, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{MDN}1}$$\end{document} n S M D N 1 = 42, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{MDN}1}$$\end{document} n G 2 M M D N 1 = 40, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{MDN}1{\rm{, after transcr. inhibition}}}$$\end{document} n G 1 M D N 1 ,aftertranscr.inhibition = 57, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{MDN}1,{\rm{after transcr. inhibition}}}$$\end{document} n S M D N 1 , aftertranscr.inhibition = 40, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{MDN}1,{\rm{after transcr. inhibition}}}$$\end{document} n G 2 M M D N 1 , aftertranscr.inhibition = 34). ( H – J ) Wild-type cells expressing no mCitrine, as well as cells carrying an additional copy of the HTB1, HTB2 , or ACT1 promoter driving mCitrine were incubated with smFISH probes against mCitrine . mRNA concentrations in G1, S, and G2/M were estimated by dividing the number of detected spots by the cell volume. Box plots represent median and 25th and 75th percentiles; whiskers indicate the 5th and 95th percentiles and symbols show outliers; HTB1prom-mCitrine ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{YPD}}}$$\end{document} n G 1 YPD = 58, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{YPD}}}$$\end{document} n S YPD = 49, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{YPD}}}$$\end{document} n G 2 M YPD = 41, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCD}}}$$\end{document} n G 1 SCD = 54, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCD}}}$$\end{document} n S SCD = 51, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCD}}}\,$$\end{document} n G 2 M SCD = 53, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCGE}}}$$\end{document} n G 1 SCGE = 28, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCGE}}}$$\end{document} n S SCGE = 39, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCGE}}}$$\end{document} n G 2 M SCGE = 28); HTB2prom-mCitrine ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{YPD}}}$$\end{document} n G 1 YPD = 37, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{YPD}}}$$\end{document} n S YPD = 64, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{YPD}}}$$\end{document} n G 2 M YPD = 59, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCD}}}$$\end{document} n G 1 SCD = 85, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCD}}}$$\end{document} n S SCD = 59, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCD}}}$$\end{document} n G 2 M SCD = 50, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCGE}}}$$\end{document} n G 1 SCGE = 65, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCGE}}}$$\end{document} n S SCGE = 50, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCGE}}}$$\end{document} n G 2 M SCGE = 55); ACT1prom-mCitrine ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{YPD}}}$$\end{document} n G 1 YPD = 35, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{YPD}}}$$\end{document} n S YPD = 59, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{YPD}}}$$\end{document} n G 2 M YPD = 41, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCD}}}$$\end{document} n G 1 SCD = 38, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCD}}}$$\end{document} n S SCD = 75, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCD}}}$$\end{document} n G 2 M SCD = 42, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCGE}}}$$\end{document} n G 1 SCGE = 37, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCGE}}}$$\end{document} n S SCGE = 33, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCGE}}}$$\end{document} n G 2 M SCGE = 54); no mCitrine ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{YPD}}}$$\end{document} n G 1 YPD = 15, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{YPD}}}$$\end{document} n S YPD = 28, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{YPD}}}$$\end{document} n G 2 M YPD = 37, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCD}}}$$\end{document} n G 1 SCD = 32, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCD}}}$$\end{document} n S SCD = 30, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCD}}}$$\end{document} n G 2 M SCD = 48, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}1}^{{\rm{SCGE}}}$$\end{document} n G 1 SCGE = 26, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{S}}}^{{\rm{SCGE}}}$$\end{document} n S SCGE = 49, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{n}}}_{{\rm{G}}2{\rm{M}}}^{{\rm{SCGE}}}$$\end{document} n G 2 M SCGE = 31).

    Article Snippet: As an additional negative control, global transcription in wild-type cells was blocked by an 80-min treatment with 8 μg/mL thiolutin (Biomol) (see above) prior to incubation with MDN1 probes (Fig. ).

    Techniques: Incubation, Inhibition, Expressing