antibodies against brd4 (Bethyl)
Structured Review

Antibodies Against Brd4, supplied by Bethyl, used in various techniques. Bioz Stars score: 95/100, based on 48 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
https://www.bioz.com/result/antibodies against brd4/product/Bethyl
Average 95 stars, based on 48 article reviews
Images
1) Product Images from "E2F1 K117 methylation by SETD6 disrupts BRD4–E2F1 binding and modulates E2F1 chromatin binding and gene regulation in prostate cancer cells"
Article Title: E2F1 K117 methylation by SETD6 disrupts BRD4–E2F1 binding and modulates E2F1 chromatin binding and gene regulation in prostate cancer cells
Journal: Nucleic Acids Research
doi: 10.1093/nar/gkaf1513
Figure Legend Snippet: E2F1-BRD4 binding is lost with K117 monomethylated E2F1 in vitro . ( A ) Crystal structure of the human BRD4 BD1 (sandy-brown) in complex with an acetylated K117ac/K120ac E2F1 peptide (blue) (PDB 6ULS) showing the key interaction of K117ac with BD1. ( B ) Coomassie BB stained 12% SDS gel of the purified GST tagged truncated BRD4 (2-477 aa) protein including BD1 and BD2 (BD1/2) as well as the purified BD1 domain (2-220 aa). The GST-tagged BRD4 proteins are marked with asterisks. ( C ) Binding of the GST-BRD4 BD1/2 to modified E2F1 peptides. 15 aa long E2F1 peptides with different combinations of unmodified, acetylated, and methylated K117 and K120 were synthesized on peptide SPOT arrays. The sequence of each peptide is listed in the table. Peptide arrays were incubated with 5 nM GST-BRD4 BD1/2 and binding was detected using a GST-specific antibody. The bar diagram shows the binding of E2F1-BRD4 to K117ac/K120ac and K117me/K120ac observed in three independent experiments. The bars represent the averages. The P- value was determined by two flanked t ‐test with equal variance. ( D ) Same as in panel (C), but GST-BRD4 BD1 was used. Additional data are provdied in .
Techniques Used: Binding Assay, In Vitro, Staining, SDS-Gel, Purification, Modification, Methylation, Synthesized, Sequencing, Incubation
Figure Legend Snippet: E2F1-BRD4 binding is lost with K117 monomethylated E2F1 in cells. ( A ) GFP-tagged BRD4 (2-477) and Flag-E2F1 (2-437) were transfected into DU145 SETD6 WT and KO cells. The GFP-tagged BRD4 was purified by GFP-trap and analyzed by western-blot with an anti-GFP antibody. Co-purification of Flag-E2F1 was determined by anti-Flag antibody. Equal loading of cell lysate isolated from transfected DU145 SETD6 WT or KO was verified by western-blot analysis against β-actin, GFP, and Flag. ( B ) GFP-tagged BRD4 (2-477) and Flag-E2F1 (2-437) WT or K117R were transfected into in DU145 SETD6 KO cells. Some of the transfected cells were treated with JQ1-Bromodomain-Kac binding inhibitor (5 µM) or DMSO as control. GPF-trap and western-blot analysis was conducted as in panel A. (C–E) Interaction of BRD4 and E2F1 investigated by PLA. All experiments were conducted in DU145 cells. Exemplary microscopy images are shown. Scale bar: 10 µm. PLA signal quantification (PLA dots per nucleus, AU) for each sample is shown on the right. Statistical analysis was performed using Student’s t -test in GraphPad (**** P < .0001). ( C ) Interaction of endogenous BRD4 and Flag-E2F1 in the absence and the presence of the SAHA deacetylase inhibitor (20 µM) for 5 h (Flag-E2F1). Negative control (Neg) refers to reaction conducted without addition of Flag primary antibody. The interaction of BRD4 and E2F1 was detected and it was shown to be stimulated by increasing acetylation levels after SAHA treatment. Number of analyzed cells: 183, 132, 223. ( D ) Detection of the interaction of endogenous BRD4 and endogenous E2F1 in the presence of 40 µM SAHA for 5 h in DU145 cells (Control) and SETD6 KO cells (KO1 and KO2). Negative control (Negative) refers to reaction conducted without addition of E2F1 primary antibody. Number of analyzed cells: 67, 236, 104, 91. ( E ) Interaction of endogenous BRD4 and endogenous E2F1 in the presence of 40 µM SAHA for 5 h in DU145 cells and with overexpression of GFP (GFP empty) or GFP-SETD6 (GFP-SETD6). Negative control (Negative) refers to reaction conducted without addition of E2F1 primary antibody. Number of analyzed GFP positive cells: 19, 18, 28.
Techniques Used: Binding Assay, Transfection, Purification, Western Blot, Copurification, Isolation, Control, Microscopy, Histone Deacetylase Assay, Negative Control, Over Expression
Figure Legend Snippet: E2F1-BRD4 co-occurence is observed in SETD6 KO but not SETD6 WT cells. ( A ) Heatmap of RPKM-normalized E2F1 ChIP-seq signals at E2F1 peaks (±0.8 kb) showing differential chromatin binding of E2F1 in SETD6 WT and KO cells stably expressing Flag-E2F1. The third heatmap shows BRD4 Chip-seq signals in a prostate cancer cell line (SRR1170714) using the same clustering. See also . ( B ) Example browser views showing ChIP-seq of BRD4 (SRR1170714, green) and E2F1 in SETD6 WT and KO cells. See also for additional examples. ( C ) Correlation analysis of E2F1 binding in SETD6 WT and KO cells with the literature BRD4 chromatin binding profile used in panel (A). E2F1 and BRD4 signals were determined in the E2F1 peak regions shown in panel (A) and their correlation was determined. ( D ) Bar-graph showing the slope of the correlation line of BRD4 and E2F1 binding signals in SETD6 WT or KO cells determined using three BRD4 ChIP-seq data sets (datasets SRR1170714, SRR5467129, and SRR5467130). The corresponding analyses are shown in panel (C) and . P -value determined by two-flanked t -test assuming equal variance.
Techniques Used: ChIP-sequencing, Binding Assay, Stable Transfection, Expressing
Figure Legend Snippet: Promoter and enhancer binding of BRD4 at genes preferentially bound by E2F1 and upregulated in SETD6 WT or KO context. ( A ) Average of aggregated BRD4 signals at promoter and enhancer elements of genes preferentially bound by E2F1 and upregulated in SETD6 WT or KO context. Note stronger binding in SETD6 KO cells. P -value determined by two-flanked t -test assuming equal variance. ( B ) Representative genome browser views showing co-occupancy of BRD4 and E2F1 at five genomic regions in SETD6 KO cells: C6orf226, TBCC, RPL21, RPL38, and MYC. ChIP-seq tracks were visualized using IGV (version 2.13.1) displaying BRD4 (SRR1170714, green), E2F1 in SETD6 WT (blue), and E2F1 in SETD6 KO (red) DU145 cells. ( C ) ChIP from SETD6 WT and KO DU145 cells performed using a BRD4-specific antibody to enrich BRD4-bound chromatin fragments. IgG was used as a negative control to assess the specificity of the immunoprecipitation. BRD4 occupancy was evaluated by qPCR at the same loci as shown in panel (B). Two independent biological replicates with three technical repeats were performed. Statistical significance was determined using a two-tailed t -test assuming equal variance. The negative controls RPL21 and RPL28 did not yield a detectable signal. Note the elevated BRD4 binding in SETD6 KO context. ( D ) RT-qPCR analysis of the relative expression of the five target genes shown in panel (B) in untreated SETD6 WT and KO DU145 cells (control) as well as after addition of DMSO and JQ1. Note the strong effect of JQ1 on gene expression in SETD6 KO cells.
Techniques Used: Binding Assay, ChIP-sequencing, Negative Control, Immunoprecipitation, Two Tailed Test, Quantitative RT-PCR, Expressing, Control, Gene Expression
Figure Legend Snippet: Summary of the results of this study. SETD6 monomethylates E2F1 at K117. This methylation disrupts the E2F1–BRD4 interaction leading to different target loci being bound by both factors. In the absence of K117 methylation, E2F1 is acetylated at K117 and K120 leading to BRD4 binding and a concerted engagement of both protein at genomic target sites. As a consequence, methylated and unmethylated E2F1 regulates distinct gene sets in prostate cancer cells.
Techniques Used: Methylation, Binding Assay



